Superstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations
نویسندگان
چکیده
We study the singularly perturbed state-dependent delay-differential equation εẋ(t) = −x(t)− kx(t− r), r = r(x(t)) = 1 + x(t), (∗) which is representative of a broader class of such equations of the form εẋ(t) = g(x(t), x(t− r)), r = r(x(t)). It is known that for every sufficiently small ε > 0, equation (∗) possesses at least one so-called slowly oscillating periodic solution, and moreover, the graph of every such solution approaches a specific sawtooth-like shape as ε → 0. In this paper we obtain a higher-order asymptotic description of the sawtooth, including the location of the minimum and maximum of the solution with the form of the solution near these turning points, and as well an asymptotic formula for the period. Using these and other asymptotic formulas, we further show that the solution enjoys a property which we term superstability, namely, that the nontrivial characteristic multipliers are of size O(ε) for small ε. Additionally, this stability property implies that this solution is unique among all slowly oscillating periodic solutions of (∗), again for small ε.
منابع مشابه
A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملHomotopy analysis method and its application for singularly perturbed delay differential equations with layer behavior
در این مقاله یک روش تحلیلی بر پایهی روش تحلیل هموتوپی برای حل معادله دیفرانسیل-تفاضلی اختشاشی منفرد ارائه شده است. معادلات مورد بررسی در این مقاله از نوع تاخیری است که دارای رفتار لایه مرزی نیز هستند. تفاوت روش تحلیل هموتوپی با روشهای تحلیلی دیگر فراهم کردن یک راه ساده برای کنترل ناحیه همگرایی سری جواب بدست آمده معادله با استفاده از پارامتر کمکی تعبیه شده در این روش است. در این مقاله صحت و درس...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملShifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method
The main idea proposed in this paper is the perturbed shifted Chebyshev Galerkin method for the solutions of delay Fredholm and Volterra integrodifferential equations. The application of the proposed method is also extended to the solutions of integro-differential difference equations. The method is validated using some selected problems from the literature. In all the problems that are considered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011